Chapter 7 Class 12 Integrals
Concept wise

Slide18.JPG

Slide19.JPG

Go Ad-free

Transcript

Misc 38 βˆ«β–’π‘‘π‘₯/(𝑒^π‘₯ + 𝑒^(βˆ’π‘₯) ) is equal to (A) tan^(βˆ’1) (𝑒^π‘₯ )+𝐢 (B) tan^(βˆ’1)⁑〖(𝑒^(βˆ’π‘₯) )+𝐢〗 (C) log⁑(𝑒^π‘₯βˆ’π‘’^(βˆ’π‘₯) )+𝐢 (D) log⁑(𝑒^π‘₯+𝑒^(βˆ’π‘₯) )+𝐢 βˆ«β–’π‘‘π‘₯/(𝑒^π‘₯ + 𝑒^(βˆ’π‘₯) ) = βˆ«β–’π‘‘π‘₯/(𝑒^π‘₯ + 1/𝑒^π‘₯ ) = ∫1β–’(𝑒^π‘₯ 𝑑π‘₯)/(𝑒^2π‘₯ + 1) Let 𝑒^π‘₯=𝑑 𝑑𝑑/𝑑π‘₯=𝑒^π‘₯ dt = 𝑒^π‘₯ 𝑑π‘₯ Substituting, = ∫1▒𝑑𝑑/(𝑑^2 +1) = γ€–π‘‘π‘Žπ‘›γ€—^(βˆ’1) (𝑑)+ C Putting value of t = 〖𝒕𝒂𝒏〗^(βˆ’πŸ) (𝒆^𝒙 )+ C Hence, answer is (A).

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo